Format

Send to

Choose Destination
Microb Pathog. 2004 Jan;36(1):1-10.

Role of fusion protein cleavage site in the virulence of Newcastle disease virus.

Author information

1
Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA.

Abstract

Newcastle disease virus (NDV) causes a highly contagious and economically important disease in poultry. Viral determinants of NDV virulence are not completely understood. The amino acid sequence at the protease cleavage site of the fusion (F) protein has been postulated as a major determinant of NDV virulence. In this study, we have examined the role of F protein cleavage site sequence in NDV virulence using reverse genetics technology. The sequence G-R-Q-G-R present at the cleavage site of the F protein of avirulent strain LaSota was mutated to R-R-Q-K-R, which is present in the F cleavage site of neurovirulent strain Beaudette C (BC). The resultant mutated LaSota V.F. virus did not require exogenous protease for infectivity in cell culture, indicating that the F protein was cleaved by intracellular proteases. The virulence of the mutant and parental viruses was evaluated in vivo by intracerebral pathogenicity index (ICPI) and intravenous pathogenicity index (IVPI) tests in chickens. Our results showed that the modification of the F protein cleavage site resulted in a dramatic increase in virulence from an ICPI value of 0.00 for LaSota to a value of 1.12 for LaSota V.F. However, the ICPI value of LaSota V.F. was lower than that of BC, which had a value of 1.58. Interestingly, the IVPI tests showed values of 0.00 for both LaSota and LaSota V.F. viruses, compared to the IVPI value of 1.45 of BC. In vitro characteristics of the viruses were also studied. Our results demonstrate that the efficiency of cleavage of the F protein plays an important role if the NDV is delivered directly into the brains of chicks, but there could be other viral factors that probably affect peripheral replication, viremia, or entry into the central nervous system.

PMID:
14643634
DOI:
10.1016/j.micpath.2003.07.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center