Format

Send to

Choose Destination
Free Radic Biol Med. 2003 Dec 1;35(11):1457-68.

Nitric oxide induces apoptosis via hydrogen peroxide, but necrosis via energy and thiol depletion.

Author information

1
Department of Biochemistry, University of Cambridge, Cambridge, UK.

Abstract

We investigated the mechanisms by which two nitric oxide (NO) donors, diethylenetriamine/NO adduct (DETA/NO) and S-nitrosoglutathione (GSNO), induced cell death in a J774 macrophage cell line. Both NO donors induced caspase activation within 6 h, but only DETA/NO-induced caspase activation was sensitive to inhibition of p38 and was completely prevented by antioxidants catalase, ascorbate, dehydroascorbate, or N-acetylcysteine, suggesting that DETA/NO-induced apoptosis may be mediated by H(2)O(2). Consistent with this, DETA/NO acutely stimulated reactive oxygen species (ROS) production by mitochondria and cells, and inhibited catalase-mediated H(2)O(2) breakdown in cells. After prolonged, 24 h exposure of cells to DETA/NO, inactivation of caspases occurred, which was accompanied by an increase in necrosis. DETA/NO-induced necrosis was insensitive to caspase inhibitors, but was partially prevented by catalase or N-acetylcysteine, and was preceded by inhibition of glyceraldehyde-3-phosphate dehydrogenase and a decrease in cellular adenosine triphosphate (ATP). GSNO was even more potent in inhibiting glycolysis and switching apoptosis to necrosis. In cells depleted of glutathione, GSNO and DETA/NO induced rapid necrosis, which resulted from rapid depletion of ATP due to inhibition of glycolysis. Glycolytic intermediate 3-phosphoglycerate decreased DETA/NO-induced necrosis and increased apoptosis. We conclude that: (i). NO-induced apoptosis is mediated by H(2)O(2); (ii). NO-induced necrosis is mediated by energy failure speeded by thiol depletion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center