Send to

Choose Destination
Plant Mol Biol. 1992 Dec;20(6):1003-17.

Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase.

Author information

Botanisches Institut, Universität München, Germany.


The phytochrome gene (phyCer) of the moss Ceratodon purpureus was isolated and characterized. phyCer is composed of three coding exons: exon I of 2035 bp, exon II of 300 bp and exon III of 1574 bp. The deduced polypeptide encoded by exon I and II exhibits substantial sequence homology to the conserved NH2-terminal chromophore domain of known phytochromes. In contrast, the COOH-terminal polypeptide encoded by exon III shows no sequence homology to any phytochrome molecule. phyCer most likely represents a single-copy gene and is expressed in a light-independent manner. From the DNA sequence analysis it can be deduced that the PhyCer polypeptide is composed of 1303 amino acids (including the starting Met) which predicts a molecular mass for PhyCer of 145 kDa. The polypeptide encoded in exon III exhibits striking homology within the 300 carboxy-terminal amino acids to the catalytic domain of protein kinases. The carboxy terminus of PhyCer was found to be most homologous to protein-tyrosine kinases of Dictyostelium discoideum and to the products of retroviral oncogenes which belong to the Raf-Mos serine/threonine kinase family. From the hydropathy profile PhyCer appears to be a soluble protein. The predicted structure suggests that PhyCer represents a soluble light-sensor protein kinase which is linked with a cellular phosphorylating cascade.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center