Send to

Choose Destination
See comment in PubMed Commons below
Genes Dev. 2003 Dec 1;17(23):2889-901. Epub 2003 Nov 21.

tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis.

Author information

  • 1Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA.


All tRNAHis molecules are unusual in having an extra 5' GMP residue (G(-1)) that, in eukaryotes, is added after transcription and RNase P cleavage. Incorporation of this G(-1) residue is a rare example of nucleotide addition occurring at an RNA 5' end in a normal phosphodiester linkage. We show here that the essential Saccharomyces cerevisiae ORF YGR024c (THG1) is responsible for this guanylyltransferase reaction. Thg1p was identified by survey of a genomic collection of yeast GST-ORF fusion proteins for addition of [alpha-32P]GTP to tRNAHis. End analysis confirms the presence of G(-1). Thg1p is required for tRNAHis guanylylation in vivo, because cells depleted of Thg1p lack G(-1) in their tRNAHis. His6-Thg1p purified from Escherichia coli catalyzes the guanylyltransferase step of G(-1) addition using a ppp-tRNAHis substrate, and appears to catalyze the activation step using p-tRNAHis and ATP. Thg1p is highlye conserved in eukaryotes, where G(-1) addition is necessary, and is not found in eubacteria, where G(-1) is genome-encoded. Thus, Thg1p is the first member of a new family of enzymes that can catalyze phosphodiester bond formation at the 5' end of RNAs, formally in a 3'-5' direction. Surprisingly, despite its varied activities, Thg1p contains no recognizable catalytic or functional domains.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center