Format

Send to

Choose Destination
Hum Gene Ther. 2003 Nov 20;14(17):1595-604.

Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates.

Author information

1
Genetic Therapy, Inc., A Novartis Company, Gaithersburg, MD 20878, USA.

Abstract

Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice. To evaluate possible species differences in Ad vector tropism, we characterized the effects of each detargeting mutation in non-human primates after systemic delivery to confirm our conclusions made in mice. In non-human primates, CAR was found to have minimal effects on vector delivery to all organs examined including liver and spleen. Cell-surface alpha nu integrins played a significant role in delivery of vector to the spleen, lung and kidney. The fiber shaft mutation S*, which presumably inhibits HSG binding, was found to significantly decrease delivery to all organs examined. The ability to detarget the liver corresponded with decreased elevations in liver serum enzymes (aspartate transferase [AST] and alanine transferase [ALT]) 24 hr after vector administration and also in serum interleukin (IL)-6 levels 6 hr after vector administration. The biodistribution data generated in cynomolgus monkeys correspond with those data derived from mice, demonstrating that CAR binding is not the major determinant of viral tropism in vivo. Vectors containing the fiber shaft modification may provide for a detargeted adenoviral vector on which to introduce new tropisms for the development of targeted, systemically deliverable adenoviral vectors for human clinical application.

PMID:
14633402
DOI:
10.1089/104303403322542248
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center