Send to

Choose Destination
Kidney Int. 2003 Dec;64(6):2079-91.

DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): modulation during epithelial-mesenchymal transition.

Author information

Department of Medicine and Therapeutics, University College Dublin, Dublin, Ireland.



Tubulointerstitial inflammation and fibrosis are pathologic hallmarks of end-stage renal disease (ESRD). Here we have used DNA microarray technology to monitor the transcriptomic responses to murine unilateral ureteral obstruction (UUO) with a view to identifying molecular modulators of tubulointerstitial fibrosis.


Using Affymetrix Mu74Av2 microarrays, gene expression 4 and 10 days postobstruction was investigated relative to control contralateral kidneys. Candidate profibrogenic genes were further investigated in epithelial cells undergoing epithelial to mesenchymal transition (EMT) in vitro.


mRNA levels for 1091 gene/EST sequences, of a total of 12,488 displayed on the microarray, were altered twofold or greater by days 4 and 10 postobstruction compared to contralateral control kidneys. Genes were categorised into functional groups, including modulators of cytoskeletal and extracellular matrix metabolism, cell growth, signalling, and transcription/translational events. Among the potentially profibrogenic genes, whose mRNA levels were increased after UUO, were fibroblast-inducible secreted protein (fisp-12), the murine homologue of connective tissue growth factor (CTGF), collagen XVIIIalpha1, secreted protein acidic and rich in cysteine (SPARC), and src-suppressed C-kinase substrate (SSeCKS). A sustained increase in fisp-12 mRNA level was observed during EMT induced by transforming growth factor-beta1 (TGF-beta1) and epidermal growth factor (EGF).


Altered gene expression in murine UUO has been demonstrated. Increased expression of fisp-12, SPARC, and SSeCKS has been shown in response to TGF-beta1 treatment and during EMT, suggesting that these genes may offer potential therapeutic targets against tubulointerstitial fibrosis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center