Send to

Choose Destination
J Biol Chem. 2004 Feb 6;279(6):4058-65. Epub 2003 Nov 14.

JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells.

Author information

Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore.


c-Jun NH2-terminal kinases (JNKs) potentiate transcriptional activity of c-Jun by phosphorylating serines 63 and 73. Moreover, JNK and c-Jun can modulate apoptosis. However, an involvement of nitric oxide (NO)-induced phosphorylation of c-Jun on Ser-63 and Ser-73 in apoptosis has not been explored. We report that in SH-Sy5y neuroblastoma cells, NO induced apoptosis following JNK activation and phosphorylation of c-Jun almost exclusively on Ser-63. Importantly, NO-induced apoptosis and caspase-3 activity were inhibited in cells stably transformed with dominant-negative c-Jun in which Ser-63 is mutated to alanine (S63A), but not in cells transformed with dominant-negative c-Jun (S73A). Ser-63 of c-Jun (but not Ser-73) was required for NO-induced, c-Jun-dependent transcriptional activity. NO-induced apoptosis, Ser-63 phosphorylation of c-Jun, and caspase-3 activity were all inhibited in SH-Sy5y cells transformed with dominant-negative jnk. A caspase-3 inhibitor prevented apoptosis but not c-Jun phosphorylation. In a different neuroblastoma cell line, NO-induced Ser-63 phosphorylation of c-Jun and apoptosis were blocked by a specific JNK inhibitor. We conclude that NO-inducible apoptosis is mediated by JNK-dependent Ser-63 phosphorylation of c-Jun upstream of caspase-3 activation in neuroblastoma cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center