Send to

Choose Destination
Mol Microbiol. 2003 Oct;50(2):645-58.

Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay.

Author information

Department of Genetics, University of Georgia, Athens, GA 30602, USA.


Previous work has shown that simultaneous inactivation of polynucleotide phosphorylase (PNPase) and RNase II (both 3' 5' exonucleases) in Escherichia coli leads to the loss of cell viability and the accumulation of partially degraded mRNA species. In order to help to distinguish how these two enzymes globally affect the abundance and decay of mRNAs, we have carried out a genome-wide analysis of the steady-state levels of E. coli transcripts using deletion mutations in either rnb or pnp. The data show that, in exponentially growing cells, inactivation of PNPase leads to an increase in the steady-state level of more expressed mRNAs (17.3%) than inactivation of RNase II (7.3%). In contrast, the steady-state levels of a large number of E. coli mRNAs (31%) are decreased in the absence of RNase II, including almost all the ribosomal protein genes, suggesting that a major function of this enzyme is to protect specific mRNAs from the activity of other ribonucleases. Array data were confirmed by Northern analysis of 12 individual mRNAs. A comparison between the steady-state levels and the half-lives of individual mRNAs indicates that there may be a direct interaction between transcription and mRNA decay for some of the transcripts. In addition, results are presented to show significant phenotypic differences between the pnp-7 point mutant and the pnp delta 683 deletion allele.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center