Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Feb 6;279(6):4515-22. Epub 2003 Nov 10.

A novel cysteine cluster in human metal-responsive transcription factor 1 is required for heavy metal-induced transcriptional activation in vivo.

Author information

1
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.

Abstract

Metal-responsive transcription factor 1 (MTF-1) specifically binds to metal response elements (MREs) associated with a number of metal- and stress-responsive genes. Human MTF-1 contains a cysteine-rich cluster, -632Cys-Gln-Cys-Gln-Cys-Ala-Cys638-, conserved from pufferfish to humans far removed from the MRE-binding zinc finger domain and just C-terminal to a previously mapped serine/threonine-rich transcriptional activation domain. MTF-1 proteins containing two Cys-->Ala substitutions (C632A/C634A) or a deletion in this region altogether (Delta(632-644)) are significantly impaired in their ability to induce Zn(II)- and Cd(II)-responsive transcription of a MRE-linked reporter gene in transiently transfected mouse dko7 (MTF-1-/-) cells in culture under moderate metal stress but retain the ability to drive basal levels of transcription in a MRE-dependent manner in vivo and in vitro. In addition, the mutated proteins respond to induction by Zn(II) or Cd(II) with nuclear translocation and MRE binding activities comparable with wild-type MTF-1. Attempts to rescue the Delta(632-644) deletion mutant phenotype by inserting similar Cys-rich sequences from Drosophila MTF-1 were unsuccessful, suggesting that the structure of this motif within intact human MTF-1, rather than the simple presence of multiple closely spaced Cys residues, is required for function. This cysteine cluster therefore functions at a step subsequent to nuclear translocation and MRE-binding DNA to naked promoter-containing DNA and appears to be specifically required for MTF-1 to activate transcription in the presence of inducing heavy metal ions.

PMID:
14610091
DOI:
10.1074/jbc.M308924200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center