Format

Send to

Choose Destination
Biomaterials. 2004 Feb;25(5):787-93.

Effects of physiological environments on the hydration behavior of mineral trioxide aggregate.

Author information

1
School of Dentistry, College of Medicine, National Taiwan University, Chang Te Street, Taipei 10016, Taiwan, ROC.

Abstract

Utilizing scanning electron microscope, X-ray diffraction (XRD) and microhardness tests, we evaluated how various physiological environments affect the hydration behavior and physical properties of mineral trioxide aggregate (MTA). We found that the microstructure of hydrated MTA consists of cubic and needle-like crystals. The former comprised the principal structure of MTA, whereas the later were less prominent and formed in the inter-grain spaces between the cubic crystals. MTA samples were hydrated in distilled water, normal saline, pH 7, and pH 5. However, no needle-like crystals were observed in the pH 5 specimens, and erosion of the cubic crystal surfaces was noted. XRD indicated a peak corresponding to Portlandite, a hydration product of MTA, and the peak decreased noticeably in the pH 5 group. The pH 5 specimens' microhardness was also significantly weaker compared to the other three groups (p<0.0001). These findings suggest that physiological environmental effects on MTA formation are determined, in part, by environmental pH and the presence of ions. In particular, an acidic environment of pH 5 adversely affects both the physical properties and the hydration behavior of MTA.

PMID:
14609667
DOI:
10.1016/s0142-9612(03)00591-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center