Format

Send to

Choose Destination
Biochemistry. 2003 Nov 18;42(45):13212-9.

Interdependent folding of the N- and C-terminal domains defines the cooperative folding of alpha-lytic protease.

Author information

1
Graduate Group in Biophysics, University of California at San Francisco, 94143-2240, USA.

Abstract

Alpha-lytic protease (alphaLP) serves as an important model in achieving a quantitative and physical understanding of protein folding reactions. Synthesized as a pro-protease, alphaLP belongs to an interesting class of proteins that require pro regions to facilitate their proper folding. alphaLP's pro region (Pro) acts as a potent folding catalyst for the protease, accelerating alphaLP folding to its native conformation nearly 10(10)-fold. Structural and mutational studies suggested that Pro's considerable foldase activity is directed toward structuring the alphaLP C-terminal domain (CalphaLP), a seemingly folding-impaired domain, which is believed to contribute significantly to the high-energy folding and unfolding transition states of alphaLP. Pro-mediated nucleation of alphaLP folding within CalphaLP was hypothesized to subsequently enable the alphaLP N-terminal domain (NalphaLP) to dock and fold, completing the formation of native protease. In this paper, we find that ternary folding reactions of Pro and noncovalent NalphaLP and CalphaLP domains are unaffected by the order in which the components are added or by the relative concentrations of the alphaLP domains, indicating that neither discrete CalphaLP structuring nor docking of the two alphaLP domains is involved in the folding transition state. Instead, the rate-limiting step of these folding reactions appears to be a slow and concerted rearrangement of the NalphaLP and CalphaLP domains to form active protease. This cooperative and interdependent folding of both protease domains defines the large alphaLP folding barrier and is an apparent extension of the highly cooperative alphaLP unfolding transition that imparts the protease with remarkable kinetic stability and functional longevity.

PMID:
14609332
DOI:
10.1021/bi035409q
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center