Send to

Choose Destination
Diabetologia. 2003 Dec;46(12):1641-57. Epub 2003 Nov 5.

Global profiling of double stranded RNA- and IFN-gamma-induced genes in rat pancreatic beta cells.

Author information

Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808, CP 618, 1070, Brussels, Belgium.



Viral infections and local production of IFN-gamma might contribute to beta-cell dysfunction/death in Type 1 Diabetes. Double stranded RNA (dsRNA) accumulates in the cytosol of viral-infected cells, and exposure of purified rat beta cells to dsRNA (tested in the form of polyinosinic-polycytidylic acid, PIC) in combination with IFN-gamma results in beta-cell dysfunction and apoptosis. To elucidate the molecular mechanisms involved in PIC + IFN-gamma-effects, we determined the global profile of genes modified by these agents in primary rat beta cells.


FACS-purified rat beta cells were cultured for 6 or 24 h in control condition or with IFN-gamma, PIC or a combination of both agents. The gene expression profile was analysed in duplicate by high-density oligonucleotide arrays representing 5000 full-length genes and 3000 EST's. Changes of greater than or equal to 2.5-fold were considered as relevant.


Following a 6- or 24-h treatment with IFN-gamma, PIC or IFN-gamma and PIC, we observed changes in the expression of 51 to 189 genes. IFN-gamma modified the expression of MHC-related genes, and also of genes involved in beta-cell metabolism, protein processing, cytokines and signal transduction. PIC affected preferentially the expression of genes related to cell adhesion, cytokines and dsRNA signal transduction, transcription factors and MHC. PIC and/or IFN-gamma up-regulated the expression of several chemokines and cytokines that could contribute to mononuclear cell homing and activation during viral infection, while IFN-gamma induced a positive feedback on its own signal transduction. PIC + IFN-gamma inhibited insulin and GLUT-2 expression without modifying pdx-1 mRNA expression.


This study provides the first comprehensive characterization of the molecular responses of primary beta cells to dsRNA + IFN-gamma, two agents that are probably present in the beta cell milieu during the course of virally-induced insulitis and Type 1 Diabetes. Based on these findings, we propose an integrated model for the molecular mechanisms involved in dsRNA + IFN-gamma induced beta-cell dysfunction and death.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center