Send to

Choose Destination
Exp Cell Res. 2003 Nov 15;291(1):11-24.

B cell receptor directs the activation of NFAT and NF-kappaB via distinct molecular mechanisms.

Author information

Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.


BCR engagement initiates intracellular calcium ([Ca2+]i) mobilization which is critical for the activation of multiple transcription factors including NF-kappaB and NFAT. Previously, we showed that Bruton's tyrosine kinase (BTK)-deficient (btk-/-) B cells, which display a modestly reduced calcium response to BCR crosslinking, do not activate NF-kappaB. Here we show that BTK is also essential for the activation of NFAT following BCR engagement. Pharmacological mobilization of [Ca2+]i in BTK-deficient DT40 B cells (DT40.BTK) does not rescue BCR directed activation of NF-kappaB and only partially that of NFAT, suggesting existence of additional BTK-signaling pathways in this process. Therefore, we investigated a requirement for BTK in the production of diacylglycerol (DAG). We found that DT40.BTK B cells do not produce DAG in response to BCR engagement. Pharmacological inhibition of PKC isozymes and Ras revealed that the BCR-induced activation of NF-kappaB requires conventional PKCbeta, whereas that of NFAT may involve non-conventional PKCdelta and Ras pathways. Consistent with an essential role for BTK in the regulation of NFAT, B cells from btk-/- mice display defective expression of CD5, a gene under the control of NFAT. Together, these results suggest that BCR employs distinct BTK-dependent molecular mechanisms to regulate the activation of NF-kappaB versus NFAT.

[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center