Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Oct 30;425(6961):954-6.

Spontaneously emerging cortical representations of visual attributes.

Author information

1
Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel. (tal@phy.ucsf.edu

Abstract

Spontaneous cortical activity--ongoing activity in the absence of intentional sensory input--has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.

Comment in

PMID:
14586468
DOI:
10.1038/nature02078
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center