Format

Send to

Choose Destination
J Antimicrob Chemother. 2003 Dec;52(6):1018-21. Epub 2003 Oct 29.

Contribution of beta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae.

Author information

1
Department of Pathology, Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.

Abstract

The roles of beta-lactamase and alterations in penicillin-binding protein in the development of amoxicillin and amoxicillin/clavulanate resistance in two beta-lactamase-positive, amoxicillin/clavulanate-resistant (BLPACR) strains of Haemophilus influenzae were investigated. Seven beta-lactamase-negative, ampicillin-resistant (BLNAR) strains were also studied for comparison of their resistance mechanisms. All strains had been recovered from patients in Japan. The TEM type beta-lactamase of the two BLPACR strains had 100% homology with the amino acid sequences of published TEM-1 beta-lactamase, showing that amoxicillin/clavulanate resistance was not associated with mutations in this beta-lactamase. However, these strains, as well as the seven BLNAR strains, had multiple mutations in ftsI, which encodes penicillin binding protein 3 (PBP3). The transformation of H. influenzae Rd strain with amplified ftsI genes from two BLPACR and two BLNAR strains enabled the selection of amoxicillin/clavulanate-resistant transformants with the same mutations as their parent strains. We concluded that amoxicillin/clavulanate resistance in the two BLPACR strains was due to changes in PBP3. The possibility of the presence of an extended spectrum beta-lactamase was excluded in the BLPACR strains studied.

PMID:
14585854
DOI:
10.1093/jac/dkg474
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center