Send to

Choose Destination
AIDS Res Hum Retroviruses. 2003 Sep;19(9):743-53.

Drug resistance profiles of recombinant reverse transcriptases from human immunodeficiency virus type 1 subtypes A/E, B, and C.

Author information

McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.


We have expressed purified recombinant reverse transcriptase (RT) from clinical isolates of human immunodeficiency virus subtypes B, C, and A/E in Escherichia coli. The drug sensitivities of these RTs were then determined for both nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs) in cell-free RT assays. Although A/E and C viruses contained numerous polymorphisms relative to subtype B (i.e., naturally occurring variations unrelated to drug resistance), the wild-type enzymes prepared from these or subtype A/E clinical isolates displayed <2-fold differences in drug sensitivities with regard to the active triphosphate active forms of NRTIs, as compared with RT expressed from BH-10 recombinant virus. Recombinant RTs from clinical isolates of subtypes B, C, and A/E that contained multiple resistance-associated mutations displayed expected variations in levels of resistance to the intracellular active forms of 3TC, ddI, ddC, and PMPA, that is, 3TCTP, ddATP, ddCTP, and PMPApp, respectively. Subtype A/E and C RT enzymes contained only minor NNRTI polymorphisms that distinguished them from wild-type subtype B enzymes and wild-type RTs from these various subtypes showed only 1- to 4-fold variability in IC(50) values for each of nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), and calanolide A. In contrast, RT enzymes from subtype B and C viruses harboring specific NNRTI mutations were highly resistant to all four tested NNRTIs. Subtype C variants containing the novel V106M resistance codon showed cross-resistance to all approved NNRTIs in cell-free RT assays.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center