Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13344-9. Epub 2003 Oct 27.

Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation.

Author information

  • 1Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.

Abstract

Loss of imprinting is the silencing of active imprinted genes or the activation of silent imprinted genes, and it is one of the most common epigenetic changes associated with the development of a wide variety of tumors. Here, we have analyzed the effects that global imprinted gene expression has on cell proliferation and transformation. Primary mouse embryonic fibroblasts (MEFs), whose entire genome is either exclusively paternal (androgenetic) or maternal (parthenogenetic), exhibit dramatically contrasting patterns of growth. In comparison with biparental MEFs, andro-genetic proliferation is characterized by a shorter cell cycle, increased saturation density, spontaneous transformation, and formation of tumors at low passage number. Parthenogenetic MEFs reach a lower saturation density, senesce, and die. The maternally expressed imprinted genes p57kip2 and M6P/Igf2r retard proliferation and reduce the long-term growth of MEFs. In contrast, the paternally expressed growth factor Igf2 is essential for the long-term proliferation of all genotypes. Increased Igf2 expression in primary MEFs not only stimulates proliferation, but also results in their rapid conversion to malignancy with tumor formation of short latency. Our results reveal that paternally expressed imprinted genes, in the absence of maternal imprinted genes, predispose fibroblasts to rapid transformation. A potent factor in their transformation is IGF2, which on increased expression results in the rapid conversion of primary cells to malignancy. These results reveal a route by which malignant choriocarcinoma may arise from molar pregnancies. They also suggest that the derivation of stem cells from parthenogenetic embryos, for the purposes of therapeutic cloning, may be ineffective.

PMID:
14581617
PMCID:
PMC263813
DOI:
10.1073/pnas.2234026100
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center