Format

Send to

Choose Destination
Nat Genet. 2003 Nov;35(3):270-6. Epub 2003 Oct 26.

Interaction of reelin signaling and Lis1 in brain development.

Author information

1
Cain Foundation Laboratories and Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.

Abstract

Loss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1(+/-) mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal. Reln encodes an extracellular protein that regulates layer formation by interacting with VLDLR and ApoER2 (Lrp8) receptors, thereby phosphorylating the Dab1 signaling molecule. Lis1 associates with microtubules and modulates neuronal migration. We investigated interactions between the reelin signaling pathway and Lis1 in brain development. Compound mutant mice with disruptions in the Reln pathway and heterozygous Pafah1b1 mutations had a higher incidence of hydrocephalus and enhanced cortical and hippocampal layering defects. Dab1 and Lis1 bound in a reelin-induced phosphorylation-dependent manner. These data indicate genetic and biochemical interaction between the reelin signaling pathway and Lis1.

PMID:
14578885
DOI:
10.1038/ng1257
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center