Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur Cell Mater. 2003 Oct 24;6:22-7.

Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies.

Author information

1
Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA. barbara.Boyan@bme.gatech.edu

Abstract

Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium), the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra) of 4-7 mum, proliferation is reduced but differentiation is enhanced and in some cases, is synergistic with the effects of surface microtopography. In addition, cells on microrough Ti substrates form hydroxyapatite in a manner that is more typical of bone than do cells cultured on smooth surfaces. Osteoblasts also respond to growth factors and cytokines in a surface-dependent manner. On rougher surfaces, the effects of regulatory factors like 1alpha,25(OH)2D3 or 17beta-estradiol are enhanced. The response to the surface is mediated by integrins, which signal to the cell through many of the same mechanisms used by growth factors and hormones. Studies using PEG-modified surfaces indicate that increased differentiation may be related to altered attachment to the surface. When osteoblasts are grown on surfaces with chemistries or microarchitectures that reduce cell attachment and proliferation, and enhance differentiation, the cells tend to increase production of factors like TGF-beta1 that promote osteogenesis while decreasing osteoclastic activity. Thus, on microrough Ti surface, osteoblasts create a microenvironment conducive to new bone formation.

PMID:
14577052
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for European Cells and Materials Ltd
    Loading ...
    Support Center