Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2003 Nov;133(3):1407-15. Epub 2003 Oct 23.

Synthesis of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is concertedly regulated by metabolic and stress-associated signals.

Author information

1
Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100 Israel.

Abstract

In plants, excess cellular lysine (Lys) is catabolized into glutamic acid and acetyl-coenzyme A; yet, it is still not clear whether this pathway has other functions in addition to balancing Lys levels. To address this issue, we examined the effects of stress-related hormones, abscisic acid (ABA), and jasmonate, as well as various metabolic signals on the production of the mRNA and polypeptide of the bifunctional Lys-ketoglutarate reductase (LKR)/saccharopine dehydrogenase (SDH) enzyme, which contains the first two linked enzymes of Lys catabolism. The level of LKR/SDH was strongly enhanced by ABA, jasmonate, and sugar starvation, whereas excess sugars and nitrogen starvation reduced its level; thus this pathway appears to fulfill multiple functions in stress-related and carbon/nitrogen metabolism. Treatments with combination of hormones and/or metabolites, as well as use of ABA mutants in conjunction with the tester sugars mannose and 3-O-methyl-glucose further supported the idea that the hormonal and metabolic signals apparently operate through different signal transduction cascades. The stimulation of LKR/SDH protein expression by ABA is regulated by a signal transduction cascade that contains the ABI1-1 and ABI2-1 protein phosphatases. By contrast, the stimulation of LKR/SDH protein expression by sugar starvation is regulated by the hexokinase-signaling cascade in a similar manner to the repression of many photosynthetic genes by sugars. These findings suggest a metabolic and mechanistic link between Lys catabolism and photosynthesis-related metabolism in the regulation of carbon/nitrogen partitioning.

PMID:
14576281
PMCID:
PMC281635
DOI:
10.1104/pp.103.026294
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center