Format

Send to

Choose Destination
See comment in PubMed Commons below
Lancet. 2003 Oct 18;362(9392):1275-81.

Genetic cause of hyperglycaemia and response to treatment in diabetes.

Author information

1
Diabetes and Vascular Medicine, Peninsula Medical School, Exeter, UK.

Abstract

BACKGROUND:

Type 2 diabetes shows evidence of underlying heterogeneity. No studies have assessed whether different causes for diabetes change the response to oral hypoglycaemic therapy. In a few cases, patients with diabetes caused by mutations in the hepatocyte nuclear factor 1alpha (HNF-1alpha) gene have been described as sensitive to the hypoglycaemic effects of sulphonylureas. We aimed to see whether the glycaemic response to the sulphonylurea gliclazide and the biguanide metformin differed in HNF-1alpha diabetes and type 2 diabetes, and to investigate the mechanism for differences in sulphonylurea sensitivity.

METHODS:

We did a randomised crossover trial of glicazide and metformin in 36 patients, either with diabetes caused by HNF-1alpha mutations or type 2 diabetes, who were matched for body-mass index and fasting plasma glucose. The primary outcome was reduction in fasting plasma glucose. Analysis was by intention to treat. We assessed possible mechanisms for sulphonylurea sensitivity through insulin sensitivity, insulin secretory response to glucose and tolbutamide, and tolbutamide clearance.

FINDINGS:

Patients with HNF-1alpha diabetes had a 5.2-fold greater response to gliclazide than to metformin (fasting plasma glucose reduction 4.7 vs 0.9 mmol/L, p=0.0007) and 3.9-fold greater response to gliclazide than those with type 2 diabetes (p=0.002). Patients with HNF-1alpha diabetes had a strong insulin secretory response to intravenous tolbutamide despite a small response to intravenous glucose, and were more insulin sensitive than those with type 2 diabetes. Sulphonylurea metabolism was similar in both patient groups.

INTERPRETATION:

The cause of hyperglycaemia changes the response to hypoglycaemic drugs; HNF-1alpha diabetes has marked sulphonylurea sensitivity. This pharmacogenetic effect is consistent with models of HNF-1alpha deficiency, which show that the beta-cell defect is upstream of the sulphonylurea receptor. Definition of the genetic basis of hyperglycaemia has implications for patient management.

PMID:
14575972
DOI:
10.1016/S0140-6736(03)14571-0
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center