Format

Send to

Choose Destination
Infect Immun. 2003 Nov;71(11):6344-53.

Critical role of the complement system in group B streptococcus-induced tumor necrosis factor alpha release.

Author information

1
Division of Infectious Diseases, Children's Hospital, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. olevy@rics.bwh.harvard.edu

Abstract

Group B Streptococcus (GBS) is a major cause of newborn sepsis and meningitis and induces systemic release of tumor necrosis factor alpha (TNF-alpha), believed to play a role in morbidity and mortality. While previous studies have shown that GBS can induce TNF-alpha release from monocytes and macrophages, little is known about the potential modulating effect of plasma or serum on GBS-induced TNF-alpha release, and there are conflicting reports as to the host receptors involved. In a human whole-blood assay system, GBS type III COH-1 potently induced substantial monocyte TNF-alpha release in adult peripheral blood and, due to a higher concentration of monocytes, 10-fold-greater TNF-alpha release in newborn cord blood. Remarkably, GBS-induced TNF-alpha release from human monocytes was enhanced approximately 1000-fold by heat-labile serum components. Experiments employing C2-, C3-, or C7-depleted serum demonstrated that C3 activation via the alternative pathway is crucial for potent GBS-induced TNF-alpha release. Accordingly, whole blood from C3-deficient mice demonstrated significantly reduced GBS-induced TNF-alpha release. Preincubation with human serum enhanced the TNF-alpha-inducing activity of GBS in a C3- and factor B-dependent manner, implying deposition of complement components via the alternative pathway. GBS-induced TNF-alpha release was inhibited by monoclonal antibodies directed against each of the components of CR3 and CR4: the common integrin beta subunit CD18 and the alpha subunits CD11b (of CR3) and CD11c (of CR4). Blood derived from CR3 (CD11b/CD18)-deficient mice demonstrated a markedly diminished TNF-alpha response to GBS. We conclude that the ability of plasma and serum to greatly amplify GBS-induced TNF-alpha release reflects the activity of the alternative complement pathway that deposits fragments on GBS and thereby enhances CR3- and CR4-mediated monocyte activation.

PMID:
14573654
PMCID:
PMC219573
DOI:
10.1128/iai.71.11.6344-6353.2003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center