Format

Send to

Choose Destination
See comment in PubMed Commons below
Surgery. 2003 Sep;134(3):480-91.

Inactivation of the small GTPase Rac1 protects the liver from ischemia/reperfusion injury in the rat.

Author information

1
Department of Gastrointestinal Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Abstract

BACKGROUND:

In ischemia/reperfusion (I/R) injury, a massive generation of reactive oxygen species (ROS) after reperfusion is a critical factor. Rac, a member of the Rho GTPase superfamily, plays important roles in the production of ROS and activation of nuclear factor-kappaB (NF-kappaB) in vitro. However, the exact role of Rac in the ROS production and NF-kappaB activation in vivo after I/R is still obscure.

METHODS:

We blocked Rac1 activity in the rat liver using adenovirus encoding a dominant negative rac1 mutant (Ad5N17Rac1) and examined whether inactivation of Rac1 could prevent ROS generation in the hepatic I/R injury. Seventy-two hours after the adenoviral infection, hepatic I/R was induced by Pringle's maneuver for 20 minutes, followed by reperfusion in the rats.

RESULTS:

Ad5N17Rac1 infection significantly attenuated ROS production after reperfusion and suppressed the hepatic injury. Furthermore, N17Rac1 suppressed NF-kappaB activation and messenger RNA expression of tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthetase (iNOS). Ad5LacZ, a control adenovirus, had no effect on the induced hepatic I/R injury, nor did it affect NF-kappaB activation. Immunohistochemical analysis of NF-kappaB (p65) revealed that translocation of p65 to the nucleus after reperfusion was blocked in many of non-parenchymal cells (NPCs) and in hepatocytes in the Ad5N17Rac1-infected liver.

CONCLUSION:

We conclude that Rac1 is required in ROS generation and NF-kappaB activation after hepatic I/R in vivo, and that inactivation of NF-kappaB in NPCs and suppression of ROS generation in NPCs and hepatocytes possibly account for the protective effect of N17Rac1 in this study.

PMID:
14555937
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center