Send to

Choose Destination
Endocrinology. 2004 Jan;145(1):253-60. Epub 2003 Oct 9.

Regulation of collagen synthesis in mouse skin fibroblasts by distinct angiotensin II receptor subtypes.

Author information

Department of Medical Biochemistry, Ehime University Medical School, Onsen-gun, Ehime 791-0295, Japan.


We examined the possibility of whether angiotensin (Ang) II type 1 (AT1) and type 2 (AT2) receptor stimulation differentially regulates collagen production in mouse skin fibroblasts. Both AT1 and AT2 receptors were expressed in neonatal skin fibroblasts prepared from wild-type mice to a similar degree, and the AT1a receptor was exclusively expressed as opposed to the AT1b receptor. In wild-type fibroblasts, Ang II increased collagen synthesis accompanied by an increase in expression of tissue inhibitor of metalloproteinase (TIMP)-1, and these increases were inhibited by valsartan, an AT1 receptor blocker, but augmented by PD123319, an AT2 receptor antagonist. Ang II decreased basal and IGF-I-induced collagen production and inhibited TIMP-1 expression in neonatal skin fibroblasts prepared from AT1a knockout (KO) mice. These Ang II-mediated inhibitory effects on collagen production and TIMP-1 expression observed in AT1a KO fibroblasts were attenuated by the addition of PD123319 or a tyrosine phosphatase inhibitor, sodium orthovanadate, but not affected by a serine/threonine phosphatase inhibitor, okadaic acid. Moreover, we demonstrated that transfection of a catalytically inactive, dominant negative SHP-1 (Src homology 2-containing protein-tyrosine phosphatase-1) mutant inhibited the Ang II-mediated inhibitory effect on both collagen synthesis and TIMP-1 expression in AT1a KO fibroblasts. These results suggest that AT1a receptor stimulation increases collagen production in skin fibroblasts at least in part due to the inhibition of collagen degradation via the increase in TIMP-1 expression, whereas AT2 receptor stimulation exerts inhibitory effects on TIMP-1 expression, which is mediated at least partially by the activation of SHP-1, thereby possibly inhibiting collagen production.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center