Format

Send to

Choose Destination
Clin Pharmacokinet. 2003;42(13):1141-60.

Clinical pharmacokinetics of atorvastatin.

Author information

1
Department of Pharmacy, Uppsala University, Uppsala, Sweden. hans.lennernas@farmaci.uu.se

Abstract

Hypercholesterolaemia is a risk factor for the development of atherosclerotic disease. Atorvastatin lowers plasma low-density lipoprotein (LDL) cholesterol levels by inhibition of HMG-CoA reductase. The mean dose-response relationship has been shown to be log-linear for atorvastatin, but plasma concentrations of atorvastatin acid and its metabolites do not correlate with LDL-cholesterol reduction at a given dose. The clinical dosage range for atorvastatin is 10-80 mg/day, and it is given in the acid form. Atorvastatin acid is highly soluble and permeable, and the drug is completely absorbed after oral administration. However, atorvastatin acid is subject to extensive first-pass metabolism in the gut wall as well as in the liver, as oral bioavailability is 14%. The volume of distribution of atorvastatin acid is 381L, and plasma protein binding exceeds 98%. Atorvastatin acid is extensively metabolised in both the gut and liver by oxidation, lactonisation and glucuronidation, and the metabolites are eliminated by biliary secretion and direct secretion from blood to the intestine. In vitro, atorvastatin acid is a substrate for P-glycoprotein, organic anion-transporting polypeptide (OATP) C and H+-monocarboxylic acid cotransporter. The total plasma clearance of atorvastatin acid is 625 mL/min and the half-life is about 7 hours. The renal route is of minor importance (<1%) for the elimination of atorvastatin acid. In vivo, cytochrome P450 (CYP) 3A4 is responsible for the formation of two active metabolites from the acid and the lactone forms of atorvastatin. Atorvastatin acid and its metabolites undergo glucuronidation mediated by uridinediphosphoglucuronyltransferases 1A1 and 1A3. Atorvastatin can be given either in the morning or in the evening. Food decreases the absorption rate of atorvastatin acid after oral administration, as indicated by decreased peak concentration and increased time to peak concentration. Women appear to have a slightly lower plasma exposure to atorvastatin for a given dose. Atorvastatin is subject to metabolism by CYP3A4 and cellular membrane transport by OATP C and P-glycoprotein, and drug-drug interactions with potent inhibitors of these systems, such as itraconazole, nelfinavir, ritonavir, cyclosporin, fibrates, erythromycin and grapefruit juice, have been demonstrated. An interaction with gemfibrozil seems to be mediated by inhibition of glucuronidation. A few case studies have reported rhabdomyolysis when the pharmacokinetics of atorvastatin have been affected by interacting drugs. Atorvastatin increases the bioavailability of digoxin, most probably by inhibition of P-glycoprotein, but does not affect the pharmacokinetics of ritonavir, nelfinavir or terfenadine.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center