Format

Send to

Choose Destination
Environ Sci Technol. 2003 Sep 15;37(18):4190-8.

Photoformation of low-molecular-weight organic acids from brown water dissolved organic matter.

Author information

1
Water Chemistry, Engler-Bunte-Institute, University of Karlsruhe, 76128 Karlsruhe, Germany.

Abstract

This work describes the effects of simulated solar UV light on the bulk properties of dissolved organic matter (DOM) of bog lake water and on the formation of low-molecular-weight organic acids (LMWOAs). By means of size-exclusion chromatography it was shown that the more hydrophilic moieties of the DOM were preferentially photodegraded while the more hydrophobic ones remained relatively unaffected or were even formed. The combined photochemical-biological degradation proved to be more important than the pure photochemical mineralization. Formic, acetic, pyruvic, oxalic, malonic, and succinic acids were identified as important degradation products. Their contribution to the dissolved organic carbon increased from 0.31% before to 6.4% after 24 h irradiation. About 33% of the bioavailable photoproducts of DOM were comprised of these LMWOAs. The influence of nitrate on the formation of carboxylic acids could not be observed in the investigated system. Kinetic experiments indicated that degradation of LMWOAs occurred simultaneously during irradiation experiments, alpha-oxygen-substituted LMWOAs being more amenable to these processes. Dissolved iron acted as a catalyst of DOM photodegradation and LMWOA photoformation. Copper played an antagonistic role in the irradiation experiments, reducing the formation of formic, acetic, and malonic acids while increasing the formation of oxalic acid.

PMID:
14524452
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center