Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Dec 19;278(51):51758-69. Epub 2003 Oct 1.

ATP potentiates interleukin-1 beta-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR.

Author information

1
Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universit├Ąt, D-60590 Frankfurt am Main, Germany.

Abstract

Renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin (IL)-1 beta. We demonstrate here that the stable ATP analog adenosine 5'-O-(thiotriphosphate) (ATP gamma S) potently amplifies the cytokine-induced gelatinolytic content of mesangial cells mainly by an increase in the MMP-9 steady-state mRNA level. A Luciferase reporter gene containing 1.3 kb of the MMP-9 5'-promoter region showed weak responses to ATP gamma S but conferred a strong ATP-dependent increase in Luciferase activity when under the additional control of the 3'-untranslated region of MMP-9. By in vitro degradation assay and actinomycin D experiments we found that ATP gamma S potently delayed the decay of MMP-9 mRNA. Gel-shift and supershift assays demonstrated that three AU-rich elements (AREs) present in the 3'-untranslated region of MMP-9 are constitutively bound by complexes containing the mRNA stabilizing factor HuR. The RNA binding of these complexes was markedly increased by ATP gamma S. Mutation of each ARE element strongly impaired the RNA binding of the HuR containing complexes. Reporter gene assays revealed that mutation of one ARE did not affect the stimulatory effects by ATP gamma S, but mutation of all three ARE motifs caused a loss of ATP-dependent increase in luciferase activity without affecting IL-1 beta-inducibility. By confocal microscopy we demonstrate that ATP gamma S increased the nucleo cytoplasmic shuttling of HuR and caused an increase in the cytosolic HuR level as shown by cell fractionation experiments. Together, our results indicate that the amplification of MMP-9 expression by extracellular ATP is triggered through mechanisms that likely involve a HuR-dependent rise in MMP-9 mRNA stability.

PMID:
14523003
DOI:
10.1074/jbc.M305722200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center