Send to

Choose Destination
See comment in PubMed Commons below
Development. 2003 Dec;130(23):5681-93. Epub 2003 Oct 1.

Neural crest development is regulated by the transcription factor Sox9.

Author information

Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.


The neural crest is a transient migratory population of stem cells derived from the dorsal neural folds at the border between neural and non-neural ectoderm. Following induction, prospective neural crest cells are segregated within the neuroepithelium and then delaminate from the neural tube and migrate into the periphery, where they generate multiple differentiated cell types. The intrinsic determinants that direct this process are not well defined. Group E Sox genes (Sox8, Sox9 and Sox10) are expressed in the prospective neural crest and Sox9 expression precedes expression of premigratory neural crest markers. Here, we show that group E Sox genes act at two distinct steps in neural crest differentiation. Forced expression of Sox9 promotes neural-crest-like properties in neural tube progenitors at the expense of central nervous system neuronal differentiation. Subsequently, in migratory neural crest cells, SoxE gene expression biases cells towards glial cell and melanocyte fate, and away from neuronal lineages. Although SoxE genes are sufficient to initiate neural crest development they do not efficiently induce the delamination of ectopic neural crest cells from the neural tube consistent with the idea that this event is independently controlled. Together, these data identify a role for group E Sox genes in the initiation of neural crest development and later SoxE genes influence the differentiation pathway adopted by migrating neural crest cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center