Format

Send to

Choose Destination
Gastroenterology. 2003 Oct;125(4):1125-36.

Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within gastric mucosa.

Author information

1
Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York, USA.

Abstract

BACKGROUND AND AIMS:

Helicobacter pylori strains that possess the cag pathogenicity island (cag(+)) augment the risk for distal gastric cancer. Matrix metalloproteinase (MMP)-7, an epithelial cell-derived MMP that is induced by bacterial contact, is overexpressed within human gastric adenocarcinoma specimens and enhances tumor formation in rodents. We determined whether H. pylori alters MMP-7 expression and investigated the molecular pathways required for these events.

METHODS:

MMP-7 was detected in human gastric mucosa by immunohistochemistry and in H. pylori/AGS gastric epithelial cell coculture supernatants by Western analysis. AGS cells were cocultured with wild-type H. pylori, or isogenic cagA(-), cagE(-), or vacA(-) mutants, in the absence or presence of inhibitors of nuclear factor kappaB activation, p38, or extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase.

RESULTS:

H. pylori cag(+) strains increased MMP-7 expression in AGS cells 5-7-fold, whereas cag(-) isolates had no effect. Inactivation of cagE, but not cagA or vacA, completely attenuated induction of MMP-7, and inhibition of ERK 1/2 decreased MMP-7 production. In vivo, MMP-7 was expressed in gastric epithelial cells in specimens from 80% of cag(+)-colonized persons but in none of the cag(-) or uninfected subjects.

CONCLUSIONS:

H. pylori cag(+) strains enhance levels of MMP-7 within inflamed mucosa. In vitro, cag(+) isolates selectively induce MMP-7, and this is dependent on activation of ERK 1/2 by specific components within the cag island. Differential induction of MMP-7 by H. pylori cag(+) isolates may explain in part the augmentation in gastric cancer risk associated with these strains.

PMID:
14517796
DOI:
10.1016/s0016-5085(03)01206-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center