Format

Send to

Choose Destination
Tissue Cell. 2003 Oct;35(5):375-91.

A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus.

Author information

1
School of Anatomical Sciences, Faculty of Health Sciences, The University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa. mainajn@anatomy.wits.ac.za

Abstract

In the embryo of the domestic fowl, Gallus gallus variant domesticus, the lung buds become evident on day 3 of development. After fusing on the ventral midline, the single entity divides into left and right primordial lungs that elongate caudally while diverging and shifting towards the dorsolateral aspects of the coelomic cavity. On reaching their definitive topographical locations, the lungs rotate along a longitudinal axis, attach, and begin to slide into the ribs. First appearing as a solid cord of epithelial cells that runs in the proximal-distal axis of the developing lung, progressively, the intrapulmonary primary bronchus begins to canalize. In quick succession, secondary bronchi sprout from it in a craniocaudal sequence and radiate outwards. On reaching the periphery of the lung, parabronchi (tertiary bronchi) bud from the secondary bronchi and project into the surrounding mesenchymal cell mass. The parabronchi canalize, lengthen, increase in diameter, anastomose, and ultimately connect the secondary bronchi. The luminal aspect of the formative parabronchi is initially lined by a composite epithelium of which the peripheral cells attach onto the basement membrane while the apical ones project prominently into the lumen. The epithelium transforms to a simple columnar type in which the cells connect through arm-like extensions and prominently large intercellular spaces form. The atria are conspicuous on day 15, the infundibulae on day 16, and air capillaries on day 18. At hatching (day 21), the air and blood capillaries have anastomosed profusely and the blood-gas barrier become remarkably thin. The lung is well developed and potentially functionally competent at the end of the embryonic life. Thereafter, at least upto day 26, no further consequential structures form. The mechanisms by which the airways in the avian lung develop fundamentally differ from those that occur in the mammalian one. Compared with the blind-ended bronchial system that inaugurates in the mammalian lung, an elaborate, continuous system of air conduits develops in the avian one. Further studies are necessary to underpin the specific molecular factors and genetic processes that direct the morphogenesis of an exceptionally complex and efficient respiratory organ.

PMID:
14517104
DOI:
10.1016/s0040-8166(03)00058-2
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center