Default biosynthesis pathway for blood group-related glycolipids in human small intestine as defined by structural identification of linear and branched glycosylceramides in a group O Le(a-b-) nonsecretor

Glycobiology. 2004 Jan;14(1):1-12. doi: 10.1093/glycob/cwh003. Epub 2003 Sep 26.

Abstract

Glycoconjugates of the GI tract are important for microbial interactions. The expression of histo-blood group glycosyltransferases governs both the expression of blood group determinants and in part the structure and size of the glycoconjugates. Using neutral glycolipids isolated from the small intestine of a rare blood group O Le(a-b-) ABH secretor-negative (nonsecretor) individual we were able to map the "default" pathway of the individual lacking ABO, Lewis, and secretor glycosyltransferases. Structures were deduced with combined analysis of mass spectrometry (MALDI-TOF and ESI-MS/MS), and 1H NMR (500 and 600 MHz). All structures present at a level >5% were structurally resolved and included two extended structures: Galbeta4(Fucalpha3)GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer and Galbeta3GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer. The first, a novel component, is based on a type 2 chain and bears the Lex glycotopes on both its branches. The second, a major component, is based on a type 1 chain, which bears a 3-linked type 1 precursor (Lec) glycotope and a 6-linked Lex glycotope on its branches. This latter structure is identical to that previously isolated from plasma and characterized by MS and GC-MS but not by NMR. Structural resolution of these structures was supported by reanalysis of the blood group H-active decaosylceramides previously isolated from rat small intestine. Other minor linear monofucosylated penta-, hepta-, and difucosylated octaosylceramides, some bearing blood group determinants, were also identified. The cumulative data were used to define a default biosynthesis pathway where it can be seen that carbohydrate chain extension, in the absence of blood group glycosyltransferases, is controlled and regulated by non-blood group fucosylation and branching with type 2 Galbeta4GlcNAc branches.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbohydrate Conformation
  • Carbohydrate Sequence
  • Glycolipids / biosynthesis*
  • Humans
  • Intestine, Small / metabolism*
  • Lewis Blood Group Antigens / chemistry*
  • Magnetic Resonance Spectroscopy / methods
  • Molecular Sequence Data
  • Oligosaccharides / biosynthesis*
  • Oligosaccharides / chemistry
  • Rats
  • Spectrometry, Mass, Electrospray Ionization / methods

Substances

  • Glycolipids
  • Lewis Blood Group Antigens
  • Oligosaccharides