Format

Send to

Choose Destination
Cancer Biol Ther. 2003 Jul-Aug;2(4):347-53.

mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling.

Author information

1
Department of Radiatin Oncology, Virginia Commonwealth University; Richmond, Virginia USA.

Abstract

Despite therapeutic interventions including surgery, chemotherapy and radiotherapy, glioblastoma multiforme (GBM) has a very poor prognosis and novel therapies are required. MDA-7 (IL-24), when expressed via a recombinant replication defective adenovirus, Ad.mda-7, has profound anti-proliferative and cytotoxic effects in a variety of tumor cells, but not in non-transformed cells. The present studies examined the combined impact of Ad.mda-7 and ionizing radiation on the proliferation and survival of GBM cells. Ad.mda-7 reduced the proliferation of rodent and human glioma cells in MTT assays and in colony formation assays. The anti-proliferative effects of Admda-7 were enhanced by radiation in a greater than additive fashion. In vitro, this cellular change correlated with enhanced cell numbers in G1/G0 and G2/M phases of the cell cycle, implying Ad.mda-7 radiosensitizes tumor cells in a cell cycle-independent manner. The radiosensitizing effects were not observed in cultures of non-transformed primary astrocytes. The enhanced reduction in growth correlated with increased necrosis and DNA degradation. Ad.mda-7 enhanced p38 and ERK1/2 activity but did not alter JNK or Akt activity. Irradiation of cells expressing MDA-7 suppressed ERK1/2 activity and dramatically enhanced JNK1/2 activity without altering either Akt or p38 activity. Inhibition of JNK1/2, but not p38, signaling abolished the radiosensitizing properties of MDA-7. Inhibition of neither ERK1/2 nor PI3K signaling enhanced the anti-proliferative effects of Ad.mda-7, whereas combined inhibition of both pathways enhanced cell killing, suggesting that ERK and PI3K signaling can be protective against MDA-7 lethality.

PMID:
14508103
DOI:
10.4161/cbt.2.4.422
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center