Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2003 Sep;165(1):197-204.

The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis.

Author information

1
Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.

Abstract

In Drosophila, mutations in double-strand DNA break (DSB) repair enzymes, such as spn-B, activate a meiotic checkpoint leading to dorsal-ventral patterning defects in the egg and an abnormal appearance of the oocyte nucleus. Mutations in spn-D cause an array of ovarian phenotypes similar to spn-B. We have cloned the spn-D locus and found that it encodes a protein of 271 amino acids that shows significant homology to the human RAD51C protein. In mammals the spn-B and spn-D homologs, XRCC3 and RAD51C, play a role in genomic stability in somatic cells. To test for a similar role for spn-B and spn-D in double-strand DNA repair in mitotic cells, we analyzed the sensitivity of single and double mutants to DSBs induced by exposure to X rays and MMS. We found that neither singly mutant nor doubly mutant animals were significantly sensitized to MMS or X rays. These results suggest that spn-B and spn-D act in meiotic recombination but not in repair of DSBs in somatic cells. As there is no apparent ortholog of the meiosis-specific DMC1 gene in the Drosophila genome, and given their meiosis-specific requirement, we suggest that spn-B and spn-D may have a function comparable to DMC1.

PMID:
14504227
PMCID:
PMC1462735
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center