Format

Send to

Choose Destination
Genetics. 2003 Sep;165(1):185-96.

Functional dissection of a eukaryotic dicistronic gene: transgenic stonedB, but not stonedA, restores normal synaptic properties to Drosophila stoned mutants.

Author information

1
Department of Molecular and Cellular Biology and ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721.

Abstract

The dicistronic Drosophila stoned mRNA produces two proteins, stonedA and stonedB, that are localized at nerve terminals. While the stoned locus is required for synaptic-vesicle cycling in neurons, distinct or overlapping synaptic functions of stonedA and stonedB have not been clearly identified. Potential functions of stoned products in nonneuronal cells remain entirely unexplored in vivo. Transgene-based analyses presented here demonstrate that exclusively neuronal expression of a dicistronic stoned cDNA is sufficient for rescue of defects observed in lethal and viable stoned mutants. Significantly, expression of a monocistronic stonedB trangene is sufficient for rescuing various phenotypic deficits of stoned mutants, including those in organismal viability, evoked transmitter release, and synaptotagmin retrieval from the plasma membrane. In contrast, a stonedA transgene does not alleviate any stoned mutant phenotype. Novel phenotypic analyses demonstrate that, in addition to regulation of presynaptic function, stoned is required for regulating normal growth and morphology of the motor terminal; however, this developmental function is also provided by a stonedB transgene. Our data, although most consistent with a hypothesis in which stonedA is a dispensable protein, are limited by the absence of a true null allele for stoned due to partial restoration of presynaptic stonedA by transgenically provided stonedB. Careful analysis of the effects of the monocistronic transgenes together and in isolation clearly reveals that the presence of presynaptic stonedA is dependent on stonedB. Together, our findings improve understanding of the functional relationship between stonedA and stonedB and elaborate significantly on the in vivo functions of stonins, recently discovered phylogenetically conserved stonedB homologs that represent a new family of "orphan" medium (mu) chains of adaptor complexes involved in vesicle formation. Data presented here also provide new insight into potential mechanisms that underlie translation and evolution of the dicistronic stoned mRNA.

PMID:
14504226
PMCID:
PMC1462730
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center