Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2003 Oct 1;31(19):5700-13.

In vitro selection of molecular beacons.

Author information

  • 1Department of Chemistry and Biochemistry, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.

Abstract

While molecular beacons are primarily known as biosensors for the detection of nucleic acids, it has proven possible to adapt other nucleic acid binding species (aptamers) to function in a manner similar to molecular beacons, yielding fluorescent signals only in the presence of a cognate ligand. Unfortunately, engineering aptamer beacons requires a detailed knowledge of aptamer sequence and structure. In order to develop a general method for the direct selection of aptamer beacons we have first developed a selection method for molecular beacons. A pool of random sequence DNA molecules were immobilized via a capture oligonucleotide on an affinity column, and those variants that could be released from the column by a target oligonucleotide were amplified. After nine rounds of selection and amplification the elution characteristics of the population were greatly improved. A fluorescent reporter in the selected beacons was located adjacent to a DABCYL moiety in the capture oligonucleotide; addition of the target oligonucleotide led to release of the capture oligonucleotide and up to a 17-fold increase in fluorescence. Signaling was specific for the target oligonucleotide, and occurred via a novel mechanism, relative to designed molecular beacons. When the target oligonucleotide is bound it can form a stacked helical junction with an intramolecular hairpin in the selected beacon; formation of the intramolecular hairpin in turn leads to release of the capture oligonucleotide. The ability to select molecular beacons may prove useful for identifying available sites on complex targets, such as mRNAs, while the method for selection can be easily generalized to other, non-nucleic acid target classes.

PMID:
14500834
PMCID:
PMC206464
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center