Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2003 Dec 1;553(Pt 2):407-14. Epub 2003 Sep 18.

Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes.

Author information

Istituto CNR di Neuroscienze and Dipartimento di Scienze Biomediche Sperimentali, Viale Colombo 3, Università di Padova, 35121 Padova, Italy.


The synaptic release of glutamate evokes in astrocytes periodic increases in [Ca2+]i, due to the activation of metabotropic glutamate receptors (mGluRs). The frequency of these [Ca2+]i oscillations is controlled by the level of neuronal activity, indicating that they represent a specific, frequency-coded signalling system of neuron-to-astrocyte communication. We recently found that neuronal activity-dependent [Ca2+]i oscillations in astrocytes are the main signal that regulates the coupling between neuronal activity and blood flow, the so-called functional hyperaemia. Prostaglandins play a major role in this fundamental phenomenon in brain function, but little is known about a possible link between [Ca2+]i oscillations and prostaglandin release from astrocytes. To investigate whether [Ca2+]i oscillations regulate the release of vasoactive prostaglandins, such as the potent vasodilator prostaglandin E2 (PGE2), from astrocytes, we plated wild-type human embryonic kidney (HEK)293 cells, which respond constitutively to PGE2 with [Ca2+]i elevations, onto cultured astrocytes, and used them as biosensors of prostaglandin release. After loading the astrocyte-HEK cell co-cultures with the calcium indicator Indo-1, confocal microscopy revealed that mGluR-mediated [Ca2+]i oscillations triggered spatially and temporally coordinated [Ca2+]i increases in the sensor cells. This response was absent in a clone of HEK cells that are unresponsive to PGE2, and recovered after transfection with the InsP3-linked prostanoid receptor EP1. We conclude that [Ca2+]i oscillations in astrocytes regulate prostaglandin releases that retain the oscillatory behaviour of the [Ca2+]i changes. This finely tuned release of PGE2 from astrocytes provides a coherent mechanistic background for the role of these glial cells in functional hyperaemia.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center