Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Oct 1;171(7):3415-25.

KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-gamma production.

Author information

Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA 19111, USA.


Killer cell Ig-like receptor (KIR)2DL4 (2DL4, CD158d) was previously described as the only KIR expressed by every human NK cell. It is also structurally atypical among KIRs because it possesses a basic transmembrane residue, which is characteristic of many activating receptors, but also contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). We expressed epitope-tagged 2DL4 in an NK-like cell line to study receptor function. Three distinct 2DL4 cDNA clones were analyzed: one encoding the "conventional" 2DL4 with the cytoplasmic ITIM (2DL4.1) and two encoding different cytoplasmic truncated forms lacking the ITIM (2DL4.2 and 2DL4(*)). Surprisingly, one truncated receptor (2DL4.2), which is the product of a prevalent human 2DL4 allele, was not expressed on the cell surface, indicating that some individuals may lack functional 2DL4 protein expression. Conversely, both 2DL4.1 and 2DL4(*) were expressed on the cell surface and up-regulated by IL-2. Analysis of primary NK cells with anti-2DL4 mAb confirmed the lack of surface expression in a donor with the 2DL4.2 genotype. Donors with the 2DL4.1 genotype occasionally expressed receptor only on CD56(high) NK cells, although their expression was up-regulated by IL-2. Interestingly, Ab engagement of epitope-tagged 2DL4 triggered rapid and robust IFN-gamma production, but weak redirected cytotoxicity in an NK-like cell line, which was the opposite pattern to that observed upon engagement of another NK cell activating receptor, NKp44. Importantly, both 2DL4.1 and 2DL4(*) exhibited similar activation potential, indicating that the ITIM does not influence 2DL4.1 activating function. The unique activation properties of 2DL4 suggest linkage to a distinct signaling pathway.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center