Send to

Choose Destination
Eur J Biochem. 1992 Nov 15;210(1):125-32.

The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae.

Author information

Botanisches Institut, Universit├Ąt Basel, Switzerland.


In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center