Send to

Choose Destination
Biochim Biophys Acta. 1992 Nov 20;1160(2):145-55.

Microtubule organization by cross-linking and bundling proteins.

Author information

Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.


To understand microtubule function the factors regulating their spatial organization and their interaction with cellular organelles, including other microtubules, must be elucidated. Many proteins are implicated in these organizational events and the known consequences of their actions within the cell are increasing. For example, the function of microtubule bundles at the surfaces of polarized cells has recently received attention, as has the action in cortical rotation of a transient arrangement of microtubules found beneath the vegetal surface of fertilized frog eggs. The in vivo association of microtubules during early Xenopus oogenesis has added interest as microtubules bundled in cell-free extracts are protected against the action of a severing protein found in this animal. A 52 kDa F-actin bundling protein purified from Physarum polycephalum organizes microtubules and causes the cobundling of microtubules and microfilaments. These observations, in concert with others that are presented, emphasize the diversity within the family of microtubule cross-linking proteins. The challenge is to determine which proteins are relevant from a physiological perspective, to ascertain their molecular mechanisms of action and to describe how they affect cytoplasmic organization and cell function. To realize this objective, the proteins which cross-link and bundle microtubules must be investigated by techniques which reveal different but related aspects of their properties. Cloning and sequencing of genes for cross-linking proteins, their subcellular localization especially as microtubule-related changes in cell morphology are occurring and the application of genetic studies are necessary. Study of the neural MAP provides the best example of just how powerful current experimental approaches are and at the same time shows their limits. The neural MAP have long been noted for their enhancement of tubulin assembly and microtubule stability. Their spatial distribution has been studied during the morphogenesis of neural cells. Sequencing of cloned genes has revealed the functional domains of neural MAP including carboxy-terminal microtubule-binding sites. Similarities to microtubule binding proteins from other cell types stimulate interest in the neural MAP and further suggest their importance in microtubule organization. For example, MAP4 enjoys a wide cellular distribution and has microtubule-binding sequences very similar to those in the neural MAP. Moreover, the nontubulin proteins of marginal bands are immunologically related to neural MAP, indicating shared structural/functional domains. Even with these findings the mechanism by which neural MAP cross-link microtubules remains uncertain. Indeed, some researchers express doubt that microtubule cross-linking is actually a function of neural MAP in vivo.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center