Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1992 Dec 1;31(47):11940-51.

Nonlocal structural perturbations in a mutant human insulin: sequential resonance assignment and 13C-isotope-aided 2D-NMR studies of [PheB24-->Gly]insulin with implications for receptor recognition.

Author information

1
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.

PMID:
1445924
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center