Send to

Choose Destination
Mol Plant Microbe Interact. 1992 May-Jun;5(3):257-65.

Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110.

Author information

Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.


Bradyrhizobium japonicum has two closely linked homologs of the nodulation regulatory gene, nodD; these homologs are located upstream of and in divergent orientation to the nodYABCSUIJ gene cluster. We report here the nucleotide sequence and mutational analyses of both nodD copies. The predicted NodD1 and NodD2 proteins shared 62% identical amino acid residues at corresponding positions and exhibited different degrees of homology with NodD proteins of other Bradyrhizobium, Azorhizobium, and Rhizobium strains. Induction of the nodYABCSUIJ operon, as measured by expression of a translational nodC'-'lacZ fusion, required the nodD1 gene, but not nodD2. A B. japonicum mutant deleted for both nodD copies (strain delta 1267) still showed residual nodulation activity; however, nodulation of soybean was significantly delayed, and nodulation of mung bean and siratro resulted in strongly reduced nodule numbers. Fully efficient nodulation of mung bean and siratro by strain delta 1267 was restored by genetic complementation with the nodD1 gene, but not with nodD2. We conclude from these data that nodD1 is the critical gene that contributes to maximal nodulation efficiency, whereas the nodD2 gene does not play any obvious role in nodulation of the host plants tested.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center