Format

Send to

Choose Destination
Am J Physiol. 1992 Sep;263(3 Pt 1):E562-9.

Pretranslational regulation of two cardiac glucose transporters in rats exposed to hypobaric hypoxia.

Author information

1
Department of Internal Medicine, Iowa City Veterans Affairs Hospital, Iowa.

Abstract

To investigate the mechanism by which cardiac glucose utilization increases during hypoxia and increased work load, we studied the effect of 2 and 14 days of hypobaric hypoxia on the expression of two subtypes of the facilitative D-glucose transporter, the GLUT-4 or "insulin-regulatable" isoform and the GLUT-1 isoform thought to mediate basal transport. Rats lose weight when exposed to hypobaric hypoxia, so fasting controls were used in the 2-day studies and pair-fed controls in the 14-day experiments. Hypobaric hypoxia (PO2 69 mmHg) resulted in right ventricular (RV), but not left ventricular (LV), hypertrophy. RV and LV GLUT-1 mRNA levels increased 2- to 3-fold after 2 days and 1.5- to 2-fold after 14 days of hypobaric hypoxia compared with both fasted rats and normal controls. RV GLUT-1 protein increased approximately 3-fold and LV GLUT-1 protein increased 1.5-fold after 14 days of hypobaric hypoxia vs. both pair-fed and normal controls. RV GLUT-4 mRNA decreased to 26% and RV GLUT-4 protein decreased to 54% of normal control levels as a result of 2 days of hypobaric hypoxia. RV GLUT-4 mRNA decreased to 64% of normal control levels with no change in RV GLUT-4 protein as a result of 2 days of fasting. We conclude that hypobaric hypoxia increases cardiac GLUT-1 expression at the pretranslational level in both ventricles. The greater increase in GLUT-1 protein on the right suggests an additive effect of pressure overload. GLUT-4 expression is reduced early in the development of RV hypertrophy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center