Format

Send to

Choose Destination
J Muscle Res Cell Motil. 1992 Aug;13(4):406-19.

Interpretation of the X-ray diffraction pattern from relaxed skeletal muscle and modelling of the thick filament structure.

Author information

1
Institute of Biological Physics, Academy of Sciences, Pushchino, Moscow, Russia.

Abstract

The first part of this paper is devoted to the model-building studies of our high resolution meridional X-ray diffraction patterns (in the region from 1/500 to 1/50 A-1) obtained from relaxed frog muscle. A one-dimensional model of thick filament was proposed which basically consists of two symmetrical arrays of 50 crossbridge crown projections. In the proximate and central zones of the filament the crossbridge crowns are regularly shifted with a 429 A period and appear as triplets with a 130 A distance between crowns, while the crowns in the distal parts of filament are regularly ordered with a 143 A repeat. The centre-to-centre distance between regions with crossbridge perturbations is 7050 A. The length of each crown projection is about 125 A. The model includes also (1) C-protein component represented in each half of the filament by seven stripes of about 350 A long and located 429 A apart, (2) a uniform density of filament backbone of about 1.5 micron length, and (3) 13 high density stripes in a central zone located with 223 A period. The final model explains very well the positions and intensities of the main meridional reflections. A three-dimensional model of crossbridge configuration is described in the second part of the work. The model was constructed by using the intensity profiles of the first six myosin layer lines of the X-ray pattern from stretched muscle and taking into account the crossbridge perturbations and the axial size of crossbridge crown obtained from the one-dimensional studies.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
1401037
DOI:
10.1007/bf01738036
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center