Send to

Choose Destination
Biochemistry. 1992 Aug 25;31(33):7600-8.

Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump.

Author information

Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524.


Rat stomach and testis cDNAs corresponding to two alternatively spliced mRNAs encoding variants of a P-type ion-transport ATPase that closely resembles the yeast secretory pathway Ca2+ pump have been isolated and characterized. A partial kidney cDNA was identified previously using an oligonucleotide probe corresponding to part of the sarcoplasmic reticulum Ca(2+)-ATPase [Gunteski-Hamblin, A., Greeb, J., & Shull, G.E. (1988) J. Biol. Chem. 263, 15032-15040]. In the present study, we first isolated and characterized a stomach cDNA that contains the entire coding sequence. The 919 amino acid enzyme has the same apparent transmembrane organization and contains all of the conserved domains present in other P-type ATPases. Northern blot analyses demonstrate that 3.9- and 5-kilobase mRNAs corresponding to the cDNA were present in all tissues examined, suggesting that the protein it encodes performs a housekeeping function. Rat testis also contained a 3.7-kilobase mRNA that hybridized with a probe from the 5' end of the stomach cDNA but did not hybridize with a probe from the 3' end. Cloning and characterization of cDNAs corresponding to the smaller testis mRNA revealed that it is derived from the same gene but encodes a variant of the enzyme in which the C-terminal residue, Val-919, is replaced by the sequence Phe-919-Tyr-Pro-Lys-Ile-923. Similarity comparisons show that the two enzymes are more closely related to the known Ca2+ pumps than to other P-type ATPases.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center