Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 1992 Aug;9(2):307-13.

Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel.

Author information

1
Howard Hughes Medical Institute, Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254-9110.

Abstract

Charybdotoxin (CTX) blocks high conductance Ca(2+)-activated K+ channels by binding to a receptor site in the externally facing "mouth." Toxin bound to the channel can be destabilized from its site by K+ entering the channel from the opposite, internal, solution. By analyzing point mutants of CTX expressed in E. coli, assayed with single Ca(2+)-activated K+ channels reconstituted into planar lipid bilayers, we show that a single positively charged residue of the peptide, Lys-27, wholly mediates this interaction of K+ with CTX. If position 27 carries a positively charged residue, internal K+ accelerates the dissociation rate of CTX in a voltage-dependent manner; however, if a neutral Asn or Gln is substituted at this position, the dissociation rate is completely insensitive to either internal K+ or applied voltage. Position 27 is unique in this respect; charge-neutral substitutions made at other positions fail to eliminate the K+ destabilization phenomenon. The results argue that CTX bound to the channel positions Lys-27 physically close to a K(+)-specific binding site on the external end of the conduction pathway and that a K+ ion occupying this site destabilizes CTX via direct electrostatic repulsion with the epsilon-amino group of Lys-27.

PMID:
1379820
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center