Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2614-8.

What is the optimum size for the genetic alphabet?

Author information

Laboratory of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom.


An important question in biology is why the genetic alphabet is made of just two base pairs (G.C and A.T). This is particularly interesting because of the recent demonstration [Piccirilli, J. A., Krauch, T., Moroney, S. E. & Benner, S. A. (1990) Nature (London) 343, 33-37] that the alphabet can in principle be larger. It is possible to explain the size of the present genetic alphabet as a frozen character state that was an evolutionary optimum in an RNA world when nucleic acids functioned both for storing genetic information and for expressing information as enzymatically active RNA molecules--i.e., ribozymes. A previous model [Szathmáry, E. (1991) Proc. R. Soc. London Ser. B 245, 91-99] has described the principle of this approach. The present paper confirms and extends these results by showing explicitly the ways in which copying fidelity and metabolic efficiency change with the size of the genetic alphabet.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center