Send to

Choose Destination
DNA Repair (Amst). 2003 Oct 7;2(10):1087-100.

Association of XRCC1 and tyrosyl DNA phosphodiesterase (Tdp1) for the repair of topoisomerase I-mediated DNA lesions.

Author information

Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Building 37, Room 5068, Bethesda, MD, USA.


DNA topoisomerase I (Top1) is converted into a cellular poison by camptothecin (CPT) and various endogenous and exogenous DNA lesions. In this study, we used X-ray repair complementation group 1 (XRCC1)-deficient and XRCC1-complemented EM9 cells to investigate the mechanism by which XRCC1 affects the cellular responses to Top1 cleavage complexes induced by CPT. XRCC1 complementation enhanced survival to CPT-induced DNA lesions produced independently of DNA replication. CPT-induced comparable levels of Top1 cleavage complexes (single-strand break (SSB) and DNA-protein cross-links (DPC)) in both XRCC1-deficient and XRCC1-complemented cells. However, XRCC1-complemented cells repaired Top1-induced DNA breaks faster than XRCC1-deficient cells, and exhibited enhanced tyrosyl DNA phosphodiesterase (Tdp1) and polynucleotide kinase phosphatase (PNKP) activities. XRCC1 immunoprecipitates contained Tdp1 polypeptide, and both Tdp1 and PNKP activities, indicating a functional connection between the XRCC1 single-strand break repair pathway and the repair of Top1 covalent complexes by Tdp1 and PNKP.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center