Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2003 Sep 5;114(5):623-34.

RraA. a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli.

Author information

  • 1Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

Abstract

Ribonuclease E (RNase E) has a key role in mRNA degradation and the processing of catalytic and structural RNAs in E. coli. We report the discovery of an evolutionarily conserved 17.4 kDa protein, here named RraA (regulator of ribonuclease activity A) that binds to RNase E and inhibits RNase E endonucleolytic cleavages without altering cleavage site specificity or interacting detectably with substrate RNAs. Overexpression of RraA circumvents the effects of an autoregulatory mechanism that normally maintains the RNase E cellular level within a narrow range, resulting in the genome-wide accumulation of RNase E-targeted transcripts. While not required for RraA action, the C-terminal RNase E region that serves as a scaffold for formation of a multiprotein degradosome complex modulates the inhibition of RNase E catalytic activity by RraA. Our results reveal a possible mechanism for the dynamic regulation of RNA decay and processing by inhibitory RNase binding proteins.

PMID:
13678585
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center