Format

Send to

Choose Destination
Cell. 1992 Apr 17;69(2):305-15.

Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development.

Author information

1
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Abstract

We have isolated two adenylyl cyclase genes, designated ACA and ACG, from Dictyostelium. The proposed structure for ACA resembles that proposed for mammalian adenylyl cyclases: two large hydrophilic domains and two sets of six transmembrane spans. ACG has a novel structure, reminiscent of the membrane-bound guanylyl cyclases. An aca- mutant, created by gene disruption, has little detectable adenylyl cyclase activity and fails to aggregate, demonstrating that cAMP is required for cell-cell communication. cAMP is not required for motility, chemotaxis, growth, and cell division, which are unaffected. Constitutive expression in aca- cells of either ACA or ACG, which is normally expressed only during germination, restores aggregation and the ability to complete the developmental program. ACA expression restores receptor and guanine nucleotide-regulated adenylyl cyclase activity, while activity in cells expressing ACG is insensitive to these regulators. Although they lack ACA, which has a transporter-like structure, the cells expressing ACG secrete cAMP constitutively.

PMID:
1348970
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center