Send to

Choose Destination
Mol Phylogenet Evol. 1992 Mar;1(1):3-16.

Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae.

Author information

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 85721.


The internal transcribed spacer (ITS) region of 18-26S nuclear ribosomal DNA was sequenced in 12 representatives of the Compositae subtribe Madiinae and two outgroup species to assess its utility for phylogeny reconstruction. High sequence alignability and minimal length variation among ITS 1, 5.8S, and ITS 2 sequences facilitated determination of positional homology of nucleotide sites. In pairwise comparisons among Madiinae DNAs, sequence divergence at unambiguously aligned sites ranged from 0.4 to 19.2% of nucleotides in ITS 1 and from 0 to 12.9% of nucleotides in ITS 2. Phylogenetic relationships among ITS sequences of Hawaiian silversword alliance species (Argyroxiphium, Dubautia, and Wilkesia) and California tarweed taxa in Adenothamnus, Madia, Raillardella, and Raillardiopsis are highly concordant with a chloroplast DNA-based phylogeny of this group. Maximally parsimonious trees from ITS and chloroplast DNA data all suggest (a) origin of the monophyletic Hawaiian silversword alliance from a California tarweed ancestor, (b) closer relationship of the Hawaiian species to Madia and Raillardiopsis than to Adenothamnus or Raillardella, (c) paraphyly of Raillardiopsis, a segregate of Raillardella, and (d) closer relationship of Raillardiopsis to Madia and the silversword alliance than to Raillardella. These findings indicate that the ITS region in plants should be further explored as a promising source of nuclear phylogenetic markers.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center